پایان­نامه کارشناسی ارشد رشته مهندسی برق
گرایش قدرت
 
 
 
 
 
اساتید راهنما:
دکتر حمید جوادی
دکتر فرهاد حق­جو
تکه هایی از متن به عنوان نمونه :

چکیده

در این پایان­نامه، ضمن مطالعه پدیده اشباع در CTهای حفاظتی، به معضلات مربوط به آشکارسازی این پدیده و جبرانسازی جریان معوج ثانویه CT پرداخته شده می باشد و بمنظور رفع معضلات مطرح شده، روش­هایی معرفی شده و نتایج حاصله در محیط نرم­افزاری و بصورت مدلسازی با هم مقایسه گردیده­اند.
جهت آشکارسازی پدیده اشباع از روش­هایی مبتنی بر:
 

1-    مشتق مرتبه سوم، 2-    تبدیل موجک گسسته،
3-    ریخت­شناسی پیشرو، 4-    و ریخت­شناسی ریاضیاتی

بهره گیری شده می باشد.
برای جبرانسازی جریان معوج ثانویه نیز از روش­های:
 

1-    حداقل مربعات خطا، 2-    تخمین جریان مغناطیس­کنندگی،
3-    و شبکه عصبی مصنوعی با درنظرگرفتن تغییرات ساختاری شبکه نمونه (و در نتیجه تغییر قدرت اتصال کوتاه در محل نصب CT) جهت آموزش این شبکه،

بهره گیری گردیده می باشد.
پس از پیاده­سازی و مقایسه روش­های ذکرشده، روش ریخت­شناسی ریاضیاتی و حداقل مربعات خطا بعنوان مناسب­ترین روش­ جهت آشکارسازی پدیده اشباع و جبرانسازی جریان معوج ثانویه CT پیشنهاد شده­اند.
علاوه بر موردها فوق­الذکر، کوشش شده می باشد با تغییراتی در روش اعمال ریخت­شناسی ریاضیاتی (جهت آشکارسازی) و روش حداقل مربعات خطا (جهت جبرانسازی جریان معوج ثانویه)، امکان بهره گیری از روشهای مذکور در شرایط Online فراهم آید.
مشخصات هسته CT مطالعه­شده در این پایان­نامه نیز بر اساس آزمایش عملی بر روی هسته یک CT واقعی استخراج­ گردیده و در نهایت، مدل حاصله در قسمتی از شبکه شبیه­سازی­شده ایران (در محیط نرم­افزار EMTP-RV) اعمال و مورد مطالعه قرار گرفته می باشد.
کلمات کلیدی: ترانسفورماتور جریان، آشکارسازی پدیده اشباع CT، مشتق مرتبه سوم، تبدیل موجک گسسته، ریخت­شناسی پیشرو، ریخت­شناسی ریاضیاتی، جبرانسازی جریان معوج ثانویه، حداقل مربعات خطا، تخمین جریان مغناطیس­کنندگی، شبکه عصبی مصنوعی
 

فهرست مطالب

عنوان                                          صفحه
فهرست جدول‌ها ‌ح
فهرست شکل‌‌ها ‌ط
فصل 1-. مقدمه
1-1-     مقدمه   2
1-2-     مروری بر کارهای انجام شده 3
1-3-     ساختار پایان نامه 4
فصل 2-. ترانسفورماتور جریان
2-1-  مقدمه   6
2-2-  معرفی انواع ترانسفورماتورهای جریان 6
2-3-  کمیتهای مهم در ترانسفورماتور جریان حفاظتی 8
2-4-  مدار معادل ترانسفورماتور جریان 10
2-5-  شار هسته ترانسفورماتور جریان در شرایط خطا 10
2-6-  اشباع ترانسفورماتور جریان حفاظتی 12
2-6-1- عوامل تأثیرگذار بر اشباع 13
2-7-  جمع­بندی 13
فصل 3-  روشهای آشکارسازی پدیده اشباع ترانسفورماتور جریان
3-1-     مقدمه   16
3-2-     آشکارسازی پدیده اشباع مبتنی بر مشتق مرتبه سوم 16
3-3-     آشکارسازی پدیده اشباع مبتنی بر تبدیل موجک گسسته 19
3-3-1- توابع مادر و خصوصیات آنها 20
3-3-2- رفتار فیلتری و مشخصه فرکانسی توابع و 24
3-3-3- وابستگی نرخ نمونه برداری به بالاترین حد فرکانسی 24
3-3-4- انواع دیگر توابع مادر 26
3-4-     آشکارسازی پدیده اشباع مبتنی بر روش ریخت­شناسی ریاضیاتی یک­بعدی 28
3-4-1- عملگرهای اساسی MM 28
3-4-2- فیلترهای MM 29
3-4-3- اجزاء ساختاری (SE) 29
3-4-4- آشکارسازی اشباع مبتنی بر روش MM 30
3-5-     آشکارسازی پدیده اشباع با بهره گیری از روش ریخت­شناسی پیشرو 33
3-5-1- عملگرهای MLS 33
فصل 4 مدلسازی و مقایسه روشهای آشکارسازی پدیده اشباع
4-1-     مقدمه   37
4-2-     مدلسازی ترانسفورماتور جریان 37
4-3-     نتایج حاصل از آشکارسازی پدیده اشباع CT مبتنی بر روش مشتق مرتبه سوم 42
4-4-     نتایج حاصل از آشکارسازی پدیده اشباع با بهره گیری از روش تبدیل موجک 43
4-4-1- آستانه گذاری تطبیقی 44
4-5-     نتایج حاصل از آشکارسازی پدیده اشباع CT با بهره گیری از روش پیشنهادی MM 45
4-6-     نتایج حاصل از آشکارسازی پدیده اشباع CT مبتنی بر MLS 47
4-7-     مقایسه روشهای مطالعه شده آشکارسازی پدیده اشباع CT 48
فصل 5-  روشهای جبرانسازی جریان معوج ثانویه ترانسفورماتور جریان
5-1-     مقدمه   51
5-2-     جبرانسازی جریان معوج ثانویه CT با بهره گیری از روش حداقل مربعات خطا (LSE) 51
5-2-1- روش حداقل مربعات خطا (LSE) 51
5-2-2- بهره گیری از روش LSE برای جبرانسازی جریان معوج ثانویه CT 53
5-3-     جبرانسازی جریان معوج ثانویه CT مبتنی روش تخمین جریان مغناطیس­کنندگی 55
5-4-     روش پیشنهادی جبرانسازی جریان معوج ثانویه CT با بهره گیری از شبکه عصبی 59
5-4-1- فرایند آموزش شبکه عصبی 59
5-4-2- جبرانسازی جریان معوج ثانویه با بهره گیری از شبکه عصبی مصنوعی 60
5-5-     مقایسه روشهای مطالعه شده جبرانسازی جریان معوج ثانویه CT 70
فصل 6-  روشهای پیشنهادی پایان­نامه بمنظور آشکارسازی پدیده اشباع و جبرانسازی جریان معوج­ CT در شرایط Online
6-1-     آشکارسازی پدیده اشباع CT مبتنی بر روش ریخت­شناسی ریاضیاتی در شرایط Online         …………………. 73
6-2-     جبرانسازی جریان معوج ثانویه در شرایط Online مبتنی بر روش پیشنهادی حداقل مربعات خطای اصلاح شده (MLSE) 75
6-2-1- امکان بکارگیری در شرایط Online 77
6-3-     فلوچارت پیاده­سازی آشکارسازی آشکارسازی پدیده اشباع CT و جبران سازی جریان معوج ثانویه در شرایط Online 77
فصل 7-. جمع­بندی، نتیجه­گیری و ارائه پیشنهادات
7-1-     جمع­بندی و نتیجه­گیری 81
7-2-     پیشنهادات 82
فهرست مراجع 83
پیوست یک   87
پیوست دو     90
فهرست جدول‌ها
عنوان                                          صفحه
جدول ‏4‑1 : مدت زمان پیاده­سازی روشهای آشکارسازی پدیده اشباع 49
جدول ‏5‑1 : اطلاعات شرایط ساختاری در نظر گرفته شده برای آموزش شبکه عصبی مصنوعی به ازای مقاومت خطای صفر اهم 64
جدول ‏5‑2 : اطلاعات شرایط ساختاری در نظر گرفته شده برای آموزش شبکه عصبی مصنوعی به ازای مقاومت خطای 25/1 اهم 65
جدول ‏5‑3 : اطلاعات شرایط ساختاری در نظر گرفته شده برای آموزش شبکه عصبی مصنوعی به ازای مقاومت خطای 5/2 اهم 66
جدول ‏5‑4 : اطلاعات شرایط ساختاری در نظر گرفته شده برای آموزش شبکه عصبی مصنوعی به ازای مقاومت خطای 75/3 اهم 67
جدول ‏5‑5 : اطلاعات شرایط ساختاری در نظر گرفته شده برای آموزش شبکه عصبی مصنوعی به ازای مقاومت خطای 5 اهم 68
 
فهرست شکل‌‌ها
عنوان                                         صفحه
شکل ‏2‑1 : چگونگی­ی اتصال CT به شبکه قدرت 6
شکل ‏2‑2: مدار معادل ترانسفورماتور جریان 10
شکل ‏2‑3 : جریان اولیه و ثانویه اشباع­شده CT 13
شکل ‏3‑1 : جریان اولیه منتقل شده به ثانویه و جریان ثانویه CT 16
شکل ‏3‑2 : تخمین جریان با بهره گیری از مشتقات مرتبه اول (الف)، دوم (ب) و سوم (ج) 18
شکل ‏3‑3 : نمونه­ای از تابع مادر (db10) و تابع عمود بر آن[23] 21
شکل ‏3‑4 : پروسه محاسبه ضرایب مولفه دقیق و تقریبی در مراحل مختلف تجزیه 23
شکل ‏3‑5 : مشخصه فرکانسی فیلتر موجک با تابع مادر در مراحل مختلف تجزیه 23
شکل ‏3‑6 : مشخصه فرکانسی توابع مادر مختلف به ازای فرکانس نمونه برداری 10 کیلوهرتز 25
شکل ‏3‑7: مشخصه فرکانسی تابع مادر (db2) به ازای فرکانس نمونه برداری 5 کیلوهرتز 26
شکل ‏3‑8: تابع Haar گسسته 26
شکل ‏3‑9: توابع Daubechies پیوسته 27
شکل ‏3‑10 : تابع Mexican Hat پیوسته 27
شکل ‏3‑11 : تابع Morlet پیوسته 27
شکل ‏3‑12 : تابع Meyer پیوسته 27
شکل ‏3‑13 : نتیجه اعمال عملگرها و فیلترهای MM بر سیگنالf 30
شکل ‏3‑14 : اشکال مورد بهره گیری برای اجزاء ساختاری 30
شکل ‏3‑15 : تبدیل فوریه سیگنال جریان ثانویه CT در شرایط عادی سیستم و در شرایط خطا بدون معوج شدن سیگنال 31
شکل ‏3‑16 : تبدیل فوریه سیگنال جریان ثانویه CT در شرایط عادی سیستم و در شرایط خطا و معوج شدن سیگنال جریان 31
شکل ‏3‑17 : نتیجه اعمال فیلترهای متوسط­گیر و تفاضلی بر سیگنال f 32
شکل ‏3‑18 : گام­های روش MLS 33
شکل ‏3‑19 : نتیجه اعمال عملگرهای MLS بر سیگنال 34
شکل ‏4‑1 : مدار آزمایشگاهی استخراج منحنی هیسترزیس هسته CT 38
شکل ‏4‑2 : ترانسفورماتور جریان مدلسازی شده در نرمافزار EMTP-RV 39
شکل ‏4‑3 : منحنی رفت هیسترزیس مدل­شده در فیلتر هیسترزیس 39
شکل ‏4‑4 : منحنی هیسترزیس مدلسازی شده در نرم افزار EMTP-RV 39
شکل ‏4‑5 : شبکه انتقال (شبیه سازی شده در نرم افزار EMTP-RV ) 40
شکل ‏4‑6 : شبکه انتقال مورد مطالعه (قسمتی از شبکه ایران) 41
شکل ‏4‑7 : نمونه سیگنال جریان خروجی پست شماره 2 به ازای اتصال کوتاه در 25 میلی ثانیه 41
شکل ‏4‑8 : نمونه سیگنال جریان خروجی پست شماره 2 به ازای اتصال کوتاه در 25 میلی ثانیه از دید ثانویه CT 41
شکل ‏4‑9 : آشکارسازی پدیده اشباع مبتنی بر روش مشتق مرتبه سوم به ازای وقوع خطا در زاویه صفر درجه جریان 42
شکل ‏4‑10 : آشکارسازی پدیده اشباع مبتنی بر روش مشتق مرتبه سوم به ازای وقوع خطا در زاویه 180 درجه جریان 42
شکل ‏4‑11 : آشکارسازی پدیده اشباع مبتنی بر روش تبدیل موجک به ازای خطا در زاویه صفر درجه جریان 44
شکل ‏4‑12 : آشکارسازی پدیده اشباع مبتنی بر روش تبدیل موجک به ازای خطا در زاویه 180 درجه جریان 44
شکل ‏4‑13 : سیگنال اجزا ساختاری مناسب برای سیستم­های قدرت با طول 20 نمونه 45
شکل ‏4‑14 : آشکارسازی پدیده اشباع مبتنی بر روش MM به ازای خطا در زاویه صفر درجه جریان 46
شکل ‏4‑15 : آشکارسازی پدیده اشباع مبتنی بر روش MM به ازای خطا در زاویه 180 درجه جریان 46
شکل ‏4‑16 : آشکارسازی پدیده اشباع مبتنی بر روش MLS به ازای خطا در زاویه صفر درجه جریان 47
شکل ‏4‑17 : آشکارسازی پدیده اشباع مبتنی بر روش MLS به ازای خطا در زاویه 180 درجه جریان 48
شکل ‏5‑1 : جریان­های اولیه ارجاع داده شده به ثانویه و جریان ثانویه CT در حالت اشباع­شده 54
شکل ‏5‑2 : جبرانسازی جریان ثانویه CT با بهره گیری از روش LSE به ازای خطا در زاویه صفر درجه جریان 55
شکل ‏5‑3 : جبرانسازی جریان ثانویه CT با بهره گیری از روش LSE به ازای خطا در زاویه 180 درجه جریان 55
شکل ‏5‑4 : مدار معادل CT 56
شکل ‏5‑5 : جریانهای اولیه و ثانویه معوج CT 56
شکل ‏5‑6 : جبرانسازی جریان ثانویه CT با بهره گیری از روش MLS به ازای خطا در زاویه صفر درجه جریان 58
شکل ‏5‑7 : جبرانسازی جریان ثانویه CT با بهره گیری از روش MLS به ازای خطا در زاویه 180 درجه جریان 59
شکل ‏5‑10 : ساختار شبکه عصبی مصنوعی انتخاب شده 60
شکل ‏5‑8 : جبرانسازی جریان ثانویه CT با بهره گیری از شبکه عصبی مصنوعی آموزش دیده بوسیله اطلاعات شبکه با ساختار ثابت 61
شکل ‏5‑9 : جبرانسازی جریان ثانویه CT موجود در شبکه تغییر ساختار یافته با بهره گیری از شبکه عصبی مصنوعی آموزش دیده بوسیله اطلاعات شبکه با ساختار ثابت 62
شکل ‏5‑11 : جبرانسازی جریان ثانویه CT موجود در شبکه تغییر ساختار یافته با بهره گیری از شبکه عصبی مصنوعی آموزش دیده بوسیله اطلاعات شبکه با در نظر گرفتن تغییرات ساختاری ممکن در شبکه نمونه 69
شکل ‏5‑12 : جبرانسازی جریان ثانویه CT موجود در شبکه تغییر ساختار یافته با بهره گیری از شبکه عصبی مصنوعی آموزش دیده بوسیله اطلاعات شبکه با در نظر گرفتن تغییرات ساختاری ممکن در شبکه نمونه 69
شکل ‏6‑1 : آشکارسازی پدیده اشباع مبتنی بر روش MM در شرایط Online به ازای خطا در زاویه صفر درجه جریان 74
شکل ‏6‑2 : آشکارسازی پدیده اشباع مبتنی بر روش MM در شرایط Online به ازای خطا در زاویه 180 درجه جریان 74
شکل ‏6‑3 : آشکارسازی پدیده اشباع مبتنی بر روش MM در شرایط Online به ازای خطا در زاویه صفر درجه جریان 75
شکل ‏6‑4 : جبرانسازی جریان ثانویه CT با بهره گیری از روش MLSE به ازای خطا در زاویه صفر درجه جریان 76
شکل ‏6‑5 : جبرانسازی جریان ثانویه CT با بهره گیری از روش MLSE به ازای خطا در زاویه 180 درجه جریان 77
شکل ‏6‑6 : فلوچارت آشکارسازی پدیده اشباع CT و جبران سازی جریان معوج ثانویه در شرایط Online 78
 
 

این مطلب رو هم توصیه می کنم بخونین:   سمینار ارشد رشته برق کنترل: طراحی و پیاده سازی کنترل تطبیقی و سنکرونیزاسیون سیستم آشوب گونه

فصل 1-    مقدمه

فصل اول:
مقدمه

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1-1-             مقدمه

به تناسب توسعه صنعت و گستردگی و پیچیدگی سیستم­های قدرت، بر سطح اتصال کوتاه در سیستم قدرت افزوده می­گردد که این موضوع سبب افزایش تأثیر رله­های حفاظتی و تجهیزات واسط در جلوگیری از واردآمدن خسارت به تجهیزات فشارقوی در سیستم­های قدرت شده می باشد. این رله­ها برای کارکرد صحیح، نیاز به دریافت اطلاعات صحیح داشته و پس در صورت ایجاد اعوجاج در سیگنالهای دریافتی، انتظار عملکرد مورد نظر از آنها، امری بیهوده تلقی می­گردد. ترانسفورماتور جریان (CT)[1] مانند عناصر بسیار مهم بعنوان واسط رله­هاست که برای اخذ سیگنال جریانی متناسب با جریان اولیه و با دامنه­ای کوچکتر بکار گرفته می­گردد. با وجود اینکه CTها از هسته­های آهنی برای بیشینه­کردن شار پیوندی بین سیم­پیچی اولیه و ثانویه (و کمینه­کردن شار نشتی) بهره گیری می­کنند، به دلیل غیرخطی­بودن مشخصه­ی مغناطیسی هسته، مستعد اشباع­شدن می­باشند. در نقاط بالاتر از زانوی منحنی مغناطیس­شوندگی، به ازای تغییرات جریان اولیه، جریان مغناطیسی هسته افزایش چشمگیری خواهد پیدا نمود. از آنجا که جریان ثانویه‌ی CTها از تفاضل جریانِ ترانسفورماتوری اولیه و جریان مغناطیس­کنندگی بدست می­آید، تحت شرایط اشباع، جریان ثانویه با نسبت ثابتی جریان اولیه را دنبال ننموده و علاوه بر افزایش خطای نسبت تبدیل، اعوجاجی در سیگنال خروجی ظاهر خواهد گردید. به هنگام بروز خطا، در اثر مولفه DC جریان خطا (که معمولاً در طراحی CT لحاظ نمی­گردد)، پدیده اشباع رخ خواهد داد که یکی از راههای محدودکردن این اثر، بهره گیری از CT با مشخصات نامی بالاتر یا بهره گیری از الگوریتم­های خاص برای اصلاح این پدیده می باشد. از آنجا که بهره گیری از CT با مشخصات نامی بالاتر، از نظر اقتصادی مقرون به صرفه نیست، جبرانسازی نرم­افزاری پدیده اشباع CT در سیستم­های قدرت، راهکار مناسبی برای حل مسئله بوده که منجر به کاهش هزینه و افزایش قابلیت اطمینان سیستم قدرت خواهد گردید؛ بویژه آنکه چنین الگوریتمی را می­توان بسهولت در ساختار رله­های عددی (بعنوان یک پیش­پردازشگر اطلاعات) اعمال نمود. پس هدف از انجام این پروژه، تشخیص پدیده اشباع و جبران­سازی اعوجاج جریان ثانویه CT با بهره گیری از روش­های پردازش سیگنال می­باشد.

1-2-              مروری بر کارهای انجام شده

همانطور که تصریح گردید، بر اثر اشباع ترانسفورماتور جریان علاوه بر افزایش خطای نسبت تبدیل، سیگنال خروجی معوج نیز خواهد گردید. در [3-1] معضلات ناشی از بروز اشباع در ترانسفورماتورهای جریان مورد مطالعه قرار گرفته­شده می باشد.
در [4] یک روش برای آشکارسازی اشباع در ترانسفورماتورهای جریان بر اساس این واقعیت که جریان در هنگام شروع اشباع به تندی تغییر می­کند، ارائه شده می باشد. این روش، اشباع CT را به سبب کاهش ناگهانی مقدار جریان، تشخیص داده و لیکن در صورت بهره گیری از یک فیلتر پایین­گذر آنتی­الیاسینگ، از موفقیت چندانی برخوردار نیست. در [5] و [6] یک روش برای آشکارسازی اشباع ترانسفورماتور جریان بر اساس مشتق مرتبه سوم جریان ثانویه ارائه شده می باشد. در این مقالات اثر فیلتر پایین گذر آنتی الیاسینگ در نظر گرفته شده می باشد.
در [7] یک الگوریتم برای محاسبه شار هسته از روی جریان ثانویه و سپس جبران­سازی آن پیشنهاد شده می باشد. این الگوریتم به خوبی شار هسته را محاسبه می­کند و اشباع CT را در شرایط مختلف تشخیص می­دهد. با این تفاصیل در این روش از این فرض بهره گیری شده می باشد که شار پسماند در شروع محاسبات برابر صفر می باشد که در شرایط واقعی فرض مناسبی نمی­باشد.
یک روش دیگر برای آشکارسازی اشباع با محاسبه متوسط خطا و واریانس دامنه جریان در [8] پیشنهاد شده می باشد. مقدار خطا با این فرض که اگر یک جریان سینوسی کامل باشد، بایستی جمع آن جریان با ضریبی از مشتق دومش صفر باشد، تعیین می­گردد. در [9] یک روش امپدانسی برای عیان سازی اشباع در یک ترانسفورماتور جریان به مقصود حفاظت دیفرانسیلی باسبار پیشنهاد شده می باشد. این روش بر پایه معادله دیفرانسیل مرتبه اول امپدانس منبع سیستم قدرت در محل رله می­باشد و در آن از ولتاژ باسبار و جریان ثانویه ترانسفورماتور جریان برای محاسبه امپدانس بهره گیری شده می باشد. تغییرات در این امپدانس برای تعیین وضعیت ترانسفورماتور جریان به کار می­طریقه. همچنین در مورد اثرات شار پسماند در هسته، اندازه اندوکتانس مغناطیس کنندگی و حالات مختلف خطا بحث شده می باشد. در [10] یک روش آشکارسازی با بهره گیری از مولفه­های متقارن برای حفاظت دیفرانسیل پیشنهاد شده می باشد. در [11] یک روش دیگر برای آشکارسازی با بهره گیری از شبکه عصبی مصنوعی و الگوریتم ژنتیک پیشنهاد شده می باشد. در این روش از شبکه عصبی به مقصود تشخیص اشباع و از الگوریتم ژنتیک برای یافتن ساختار بهینه شبکه عصبی از نظر تعداد لایه­ها و تعداد نرون­ها در هر لایه بهره گیری شده می باشد. در [12] یک روش جدید ترکیبی با بهره گیری از مشتق دوم جریان خروجی ترانسفورماتور جریان و قاعده گذر از صفر ارائه شده می باشد.
در [13] یک روش جبران­سازی پیشنهاد شده می باشد که طی آن، پس از تخمین جریان مغناطیس­کنندگی هسته CT، این جریان به جریان ثانویه اندازه­گیری­شده اضافه ­شده، تا جریان ثانویه حاصل گردد. این الگوریتم برای شرایط مختلف خطا و سیستم به خوبی کار می­کند اما (همانند [7]) بر این فرض استوار می باشد که شار پسماند قبل از وقوع خطا صفر می باشد. الگوریتم پیشنهاد شده در [14] جریان ثانویه اعوجاج دار را جبران می­کند و سطح شار پسماند روی آن اثر نامطلوب ندارد. این الگوریتم از یک تایع دیفرانسیل مرتبه دوم برای تشخیص لحظه به اشباع رفتن بهره گیری می­کند.
یک روش جایگزین بکار بردن یک شبکه عصبی-مصنوعی برای تخمین تابعی می باشد که جریان ثانویه ترانسفورماتور جریان که در اثر اشباع اعوجاج دار شده می باشد را تصحیح کند. این روش در مقالات زیادی بهره گیری شده می باشد[19- 15]. وابستگی به ظرفیت ثانویه ترانسفورماتور جریان، عدم در نظر گرفتن کلیه عواملی که می­توانند روی اشباع تاثیر بگذارند و بهینه نبودن ساختار شبکه عصبی از نقایصی می باشد که در این مقالات به چشم می­خورند. در [20] از شبکه عصبی مصنوعی که تعداد نرون­ها و لایه­های این شبکه بوسیله الگوریتم ژنتیک بهینه شده می باشد، بمنظور آشکارسازی و جبرانسازی اشباع بهره گیری شده می باشد.

1-3-             ساختار پایان نامه

در این پایان­نامه، پس از معرفی اولیه پروژه در همین فصل، به معرفی ترانسفورماتورهای جریان، مدار معادل آن، مدل هسته و در نهایت مطالعه پدیده اشباع CT و اثر پارامترهای موجود بر آن، در فصل دوم پرداخته شده می باشد. در فصل سوم تکنیک­های مورد بهره گیری در پایان نامه برای آشکارسازی اشباع CT تشریح گردیده و فصل چهارم دربرگیرنده مراحل مدلسازی CT، شبکه نمونه (قسمتی از شبکه برق ایران) و پیاده­سازی روش­های مطالعه­شده در فصل سوم می باشد. پس از مقایسه روش­های پیاده­سازی شده و تعیین روش مناسب برای آشکارسازی پدیده اشباع در فصل چهارم، روش­های جبرانسازی جریان معوج­ ثانویه CT در فصل پنجم مطالعه شده و نتایج حاصل از پیاده­سازی روش­های جبرانسازی جریان معوج ثانویه CT و انتخاب روش مناسب، ارائه گردیده می باشد. در فصل ششم به تشریح و پیاده­سازی روش­های پیشنهادی پایان­نامه جهت آشکارسازی پدیده اشباع و جبرانسازی جریان معوج ثانویه CT در شرایط Online اختصاص داده شده و در نهایت، در فصل هفتم جمع­بندی، نتیجه­گیری و پیشنهادات ارائه گردیده می باشد.
[1] -Currant Transfirmer
***ممکن می باشد هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود اما در فایل دانلودی همه چیز مرتب و کامل و با فرمت ورد موجود می باشد***

متن کامل را می توانید دانلود نمائید

زیرا فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به گونه نمونه)

اما در فایل دانلودی متن کامل پایان نامه

 با فرمت ورد word که قابل ویرایش و کپی کردن می باشند

موجود می باشد

تعداد صفحه :118

قیمت : 14700 تومان

***

—-

پشتیبانی سایت :       (فقط پیامک)        serderehi@gmail.com

دسته‌ها: مهندسی برق