در ادامه مطلب می توانید تکه هایی از ابتدای این پایان نامه را بخوانید

دانشگاه آزاد اسلامی

واحد تهران جنوب

دانشکده تحصیلات تکمیلی

سمینار برای دریافت درجه کارشناسی ارشد

مهندسی برق – کنترل

عنوان:

مطالعه انواع روش های مدلسازی و کنترل ربات ها با مفاصل انعطاف پذیر FJR

برای رعایت حریم خصوصی اسامی استاد راهنما،استاد مشاور و نگارنده درج نمی گردد

تکه هایی از متن به عنوان نمونه : (ممکن می باشد هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود اما در فایل دانلودی همه چیز مرتب و کامل می باشد)
چکیده
در این سمینار آغاز مرور مختصری بر انواع روش های مدلسازی و کنترل ربات ها با مفاصل انعطاف پذیر (Flexible joint robot, FJR) می کنیم. سپس یک مدل مناسب که روش خطی سازی فیدبک قابل اعمال به آن باشد را برای FJR انتخاب می کنیم. در ادامه با مطالعه انواع روش های کنترل تطبیقی بر پایه خطی سازی فیدبک و تقریبگر که شامل روش های اصلاح قاعده تطبیق، انواع تقریبگرها، روش های جبران خطای تقریب و روش های OFB (فیدبک خروجی) می باشد، کوشش می کنیم روش مناسبی را پیدا کنیم که بتواند بر نامعینی های موجود در FJR غلبه کرده و عملکرد مطلوبی را داشته باشد.
مقدمه
ربات ها یکی از بهترین گزینه ها، برای اتوماسیون صنعتی می باشند. در محیط هایی که ایمنی کمی هست، ربات ها می توانند جایگزین مناسبی برای عوامل انسانی باشند. قدرت تکرارپذیری، برنامه ریزی و دقت بالای عملکرد جزو خصوصیات اصلی ربات ها می باشند. یکی از انواع ربات ها از نظر شکل ظاهری “دست ماهر ربات” (robot manipulator) می باشد که در صنایع مختلف، کاربرد فراوانی پیدا کرده می باشد. اکثرا ربات های صنعتی (industrial robots) به دست ماهر ربات اطلاق می گردد که وظایف مختلفی از قبیل برداشتن و گذاشتن قطعات، جوشکاری، رنگرزی، مونتاژ، نصب قسمت های مختلف یک دستگاه و… بر عهده آن می باشد.
دست ماهر ربات می تواند ساختار سری یا موازی داشته باشد. در اغلب موردها مقصود از دست ماهر ربات همان ساختار سری می باشد. دست ربات با ساختار سری، شامل تعدادی مفاصل و رابط های پشت سرهم می باشد و چنانچه انتهای دست ربات با ابتدای آن از طریق محیط یا یک جسم خارجی در ارتباط باشد، دست ربات جزو ساختارهای موازی قرار می گیرد، ربات های شانه هیدرولیکی hydroulic shoulder robots نمونه های بارزی از ساختارهای موازی می باشند.
دست ماهر ربات می تواند متحرک یا ثابت باشد. چنانچه نقطه ابتدایی دست ربات (پایه ربات) حرکت کند به دست متحرک (mobile robot manipulator) موسوم می باشد. طراحی، مسیریابی و کنترل دست های متحرک از پیچیدگی بیشتری نسبت به دست های ثابت برخوردار می باشد.
برای اینکه ربات ها بتوانند وظایف خواسته شده از آنها را به خوبی انجام دهند، علاوه بر طراحی و مسیریابی (trajectory planning) مناسب، بایستی کنترل کننده مناسب نیز برای آنها در نظر گرفته گردد. همزمان با راه یافتن ربات ها به صنایع مختلف، کار بر روی کنترل آنها نیز آغاز شده و تاکنون ادامه دارد. کنترل کننده های دست ربات به سه دسته کلی تقسیم می شوند:
– کنترل کننده موقعیت (سرعت)
– کنترل کننده نیرو
– کنترل کننده نیرو و موقعیت به گونه همزمان
در عملیاتی که دست ربات با محیط خارجی در تماس می باشد، طبیعتا علاوه بر کنترل موقعیت ربات، نیروی اعمال شده توسط آن نیز بایستی کنترل گردد. چنانچه یکی از دو عامل مهم یعنی نیروی اعمال شده توسط دست ربات به محیط خارجی و جابه جایی دست ربات بر یکدیگر ارجح باشند طبیعتا یکی از کنترل کننده موقعیت یا نیرو، کافی خواهد بود، اگر این طور نباشد بایستی از کنترل کننده موقعیت و نیرو به گونه همزمان بهره گیری نمود.
با در نظر داشتن دینامیک کاملا غیرخطی و کوپله ربات ها، بهره گیری از روش های کنترل غیرخطی (بجز در موردها خاص که بتوان تقریب خطی مناسبی از دینامیک ربات به دست آورد یا از روش های کنترل خطی مقاوم و تطبیقی بهره گیری نمود) در مورد آنها ضروری می باشد.
اگرچه روش های دقیقی برای مدلسازی دست ربات ماهر براساس قوانین توسعه یافته در علم دینامیک هست اما حضور اغتشاش ها، تغییرات بار، دینامیک های مدل نشده، اصطکاک و تغییرات پارامترهای مربوط به اینرسی، جرم و… تنها به دست آوردن یک مدل نامی را امکان پذیر می سازد. پس بهره گیری از روش های کنترل مقاوم و تطبیقی و هوشمند در مورد ربات ها ضروری می باشد.
در اکثر عملیات صنعتی، گشتاورهای بزرگی توسط ربات ها اعمال می گردد. موتورهای الکتریکی یکی از متداول ترین محرک های روبات ها می باشند. گشتاور کم و دور زیاد جزو خصوصیت اصلی، اکر موتورهای الکتریکی می باشد پس برای اینکه نیروی کافی برای ربات ها مهیا باشد، بایستی از جعبه دنده بهره گیری گردد. بهره گیری از جعبه دنده نه تنها باعث تطبیق دور و گشتاور موتورها به دور و گشتاور مورد نیاز ربات ها می باشد بلکه در صورت بزرگ بودن ضریب جعبه دنده باعث غلبه عوامل خطی بر غیرخطی در دینامیک ربات ها، می گردد. عیب بهره گیری از جعبه دنده، وجود لقی در آنها می باشد که باعث کاهش پهنای باند نیروی اعمال شده توسط ربات ها می گردد. برای غلبه بر مشکل فوق از جعبه دنده جدیدی به نام هارمونیک درایو (Harmonic drive) بهره گیری می کنند. خصوصیت اصلی هارمونیک درایوها، انعطاف پذیری آنها می باشد.
همانطوری که قبلا اظهار گردید، در اکثر عملیات صنعتی بایستی گشتاورهای بزرگی توسط ربات ها، اعمال گردد در نتیجه لازم می باشد که دست ربات ها از مواد صلب و به اندازه کافی محکم ساخته شوند اما از طرفی وجود هارمونیک درایوها، تسمه ها، محورهای بلند و… که براساس نوع عملیات انجام شده توسط ربات ها در ساختار آنها بهره گیری می گردد، باعث ایجاد خاصیت انعطاف پذیر در آنها می گردد.
یکی از موردها مهم در طراحی ربات ها ایمنی آنها می باشد. برای هرچه ایمن تر شدن ربات ها، علاوه بر اعمال روش های کنترل نیرو (اعمال نیروی انعطاف پذیر و سازگار در صورت برخورد آنها با بشر و…)، بایستی کمی انعطاف پذیری نیز در ساختار آنها ایجاد نمود. برای انجام بعضی از عملیات خاص نیز، انعطاف پذیری تأثیر موثری را می تواند داشته باشد.
اهمیت در نظر گرفتن انعطاف پذیری در مدلسازی و کنترل دست ربات ها به گونه تجربی در [32] نشان داده شده می باشد. اگرچه وجود انعطاف پذیری در ساختار ربات ها، مزیت هایی را به همراه خواهد داشت، اما در عین حال باعث ایجاد ارتعاش نامطلوب در ساختار آنها شده، و روش های کنترلی که بر مبنای ساختار ربات صلب می باشند دیگری کارایی نداشته و حتی ممکن می باشد منحر به ناپایداری شوند.
کار بر روی ربات های انعطاف پذیر از اوایل دهه 80 شروع گردید. انعطاف پذیری را می توان در مفاصل ربات یا در خود دست ربات (رابط ها) یا در هردو در نظر گرفت. در [95 و 32] به گونه تجربی و عملی نشان داده شده می باشد که منشاء اکثر انعطاف پذیری در ساختار ربات ها، در مفاصل آنها می باشد. تاکنون روش های کنترلی زیادی برای ربات ها با مفاصل انعطاف پذیر (FJR) و ربات ها با رابط ها انعطاف پذیر Flexible link robot (FLR و روش های کمتری نیز برای ربات ها با مفاصل و رابط های انعطاف پذیر (FL&JR) به کار گرفته شده می باشد. وجود انعطاف پذیری یکی از نامعینی های مهم در FJR می باشد. روش های مدلسازی مختلفی که به کار گرفته شده اند، تنها یک مدل نامی و تقریبی را معرفی می کنند پس بهره گیری از روش های کنترل تطبیقی مقاوم و هوشمند در مورد FJR حتی ضروری تر از دست ربات صلب می باشد.
یکی از روش های اولیه برای کنترل FJR، بهره گیری از کنترل ترکیبی براساس ایده پریشیدگی منفرد (Singular perturbution) و در حالت کلی تر رویه ناوردا (یکپارچه) (Integral manifold) می باشد. به واسطه این روش می توان، استراتژی های کنترلی که بر مبنای مدل صلب دست ربات می باشد با اصلاحات لازم به FJR اعمال نمود.
هدف در این سمینار، یافتن یک روش مناسب برای کنترل موقعیت FJR (با ساختار سری و پایه ثابت) بوده که بتواند بر نامعین های موجود در آن، خصوصا نامعینی ناشی از انعطاف پذیری، غلبه کند و در عین حال علمکرد ساده و مطلوبی داشته باشد.
در فصل اول آغاز کلیات این پژوهش که شامل هدف، پیشینه و روش کار می باشد، اظهار شده سپس در فصل دوم انواع روش های مدلسازی FJR مطالعه شده و نامعینی ناشی از انعطاف پذیری مفاصل، مورد دقت بیشتری قرار می گیرد سپس مرور مختصری بر روش های کنترل FJR خواهد گردید.
نهایتا در فصل آخر، تکنیک های کنترل تطبیقی بر پایه خطی سازی فیدبک و تقریبگر به گونه اجمال مطالعه می شوند. این تکنیک ها شامل انواع روش های اصلاح قاعده تطبیق، روش های جبران خطای تقریبگرها و روش های فیدبک خروجی OFB می باشد هدف از مطالعه این تکنیک ها یافتن یک روش مناسب برای کنترل تطبیقی FJR بر پایه خطی سازی فیدبک می باشد.
تعداد صفحه : 60
قیمت : 14700 تومان

 

این مطلب رو هم توصیه می کنم بخونین:   دانلود سمینار کارشناسی ارشد مهندسی برق قدرت: اتوماسیون شبکه های توزیع

***

—-

دسته‌ها: مهندسی برق

دیدگاهتان را بنویسید